來源:本站原創 2009-06-29 10:25:51
有5只猴子在海邊發現 一堆桃子,決定第二天來平分.第二天清晨,第一只猴子最早來到,它左分右分分不開,就朝海里扔了一只,恰好可以分成5份,它拿上自己的一份走了.第 2,3,4,5只猴子也遇到同樣的問題,采用了同樣的方法,都是扔掉一只后,恰好可以分成5份.問這堆桃子至少有多少只?
【解答】這堆桃子至少有3121只。
第一只猴子扔掉1個,拿走624個,余2496個;
第二只猴子扔掉1個,拿走499個,余1996個;
第三只猴子扔掉1個,拿走399個,余1596個;
第四只猴子扔掉1個,拿走319個,余1276個;
第五只猴子扔掉1個,拿走255個,余4堆,每堆255個。
如果不考慮正負,-4為一解
考慮到要5個猴子分,假設分n次。
則題目的解: 5^n-4
本題為5^5-4=3121.
設共a個桃,剩下b個桃,則b=(4/5)((4/5)((4/5)((4/5)((4/5)(a-1)-1)-1)-1)-1)-1),即b=(1024a-8404)/3125 ; a=3b+8+53*(b+4)/1024,而53跟1024不可約,則令b=1020可有最小解,得a=3121 ,設桃數x,得方程
4/5{4/5{4/5[4/5(x-1)-1]-1}-1}=5n
展開得
256x=3125n+2101
故x=(3125n+2101)/256=12n+8+53*(n+1)/256
因為53與256不可約,所以判斷n=255有一解.x為整數,等于3121
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看