來源:本站原創(chuàng) 2009-06-29 10:35:31
有2n個(gè)人排隊(duì)進(jìn)電影院,票價(jià)是50美分。在這2n個(gè)人當(dāng)中,其中n個(gè)人只有50美分,另外n個(gè)人有1美元(紙票子)。愚蠢的電影院開始賣票時(shí)1分錢也沒有。問:有多少種排隊(duì)方法使得每當(dāng)一個(gè)擁有1美元買票時(shí),電影院都有50美分找錢
注:1美元=100美分擁有1美元的人,擁有的是紙幣,沒法破成2個(gè)50美分
【解答】本題可用遞歸算法,但時(shí)間復(fù)雜度為2的n次方,也可以用動(dòng)態(tài)規(guī)劃法,時(shí)間復(fù)雜度為n的平方,實(shí)現(xiàn)起來相對(duì)要簡(jiǎn)單得多,但最方便的就是直接運(yùn)用公式:排隊(duì)的種數(shù)=(2n)!/[n!(n+1)!]。
如果不考慮電影院能否找錢,那么一共有(2n)!/[n!n!]種排隊(duì)方法(即從2n個(gè)人中取出n個(gè)人的組合數(shù)),對(duì)于每一種排隊(duì)方法,如果他會(huì)導(dǎo)致電影院無法找錢,則稱為不合格的,這種的排隊(duì)方法有(2n)!/[(n-1)!(n+1)!](從2n個(gè)人中取出n-1個(gè)人的組合數(shù))種,所以合格的排隊(duì)種數(shù)就是(2n)!/[n!n!]-(2n)!/[(n-1)!(n+1)!]=(2n)!/[n!(n+1)!]。至于為什么不合格數(shù)是(2n)!/[(n-1)!(n+1)!],
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看