來源:中考網整合 作者:中考網編輯 2016-06-20 14:57:52
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
矩形的性質:(除具有平行四邊形所有性質外)
①矩形的四個角都是直角;
②矩形的對角線相等;
矩形的判定:
①有三個角是直角的四邊形是矩形;
②對角線相等的平行四邊形是矩形;
菱形的特征:(除具有平行四邊形所有性質外)
①菱形的四邊相等;
②菱形的對角線互相垂直平分,并且每一條對角線平分一組對角;
菱形的判定:
四邊相等的四邊形是菱形;
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
等腰梯形的特征:
①等腰梯形同一底邊上的兩個內角相等
②等腰梯形的兩條對角線相等。
等腰梯形的判定:
①同一底邊上的兩個內角相等的梯形是等腰梯形;
②兩條對角線相等的梯形是等腰梯形。
平面圖形的鑲嵌:
任意一個三角形、四邊形或正六邊形可以鑲嵌平面;
(5)圓
點與圓的位置關系(設圓的半徑為r,點P到圓心O的距離為d):
①點P在圓上,則d=r,反之也成立;
②點P在圓內,則d
③點P在圓外,則d>r,反之也成立;
圓心角、弦和弧三者之間的關系:在同圓或等圓中,圓心角、弦和弧三者之間只要有一組相等,可以得到另外兩組也相等;
圓的確定:不在一直線上的三個點確定一個圓;
垂徑定理(及垂徑定理的推論):垂直于弦的直徑平分弦,并且平分弦所對的兩條弧;
平行弦夾等弧:圓的兩條平行弦所夾的弧相等;
圓心角定理:圓心角的度數等于它所對弧的度數;
圓心角、弧、弦、弦心距之間的關系定理及推論:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦的弦心距相等;
推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦心距中有一組量相等,那么它們所對應的其余各組量分別相等;
圓周角定理:圓周角的度數等于它所對的弧的度數的一半;
圓周角定理的推論:直徑所對的圓周角是直角,反過來,的圓周角所對的弦是直徑;
切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線;
切線的性質定理:圓的切線垂直于過切點的半徑;
切線長定理:從圓外一點引圓的兩條切線,這一點到兩切點的線段相等,它與圓心的連線平分兩切線的夾角;
(6)尺規作圖(基本作圖、利用基本圖形作三角形和圓)
作一條線段等于已知線段,作一個角等于已知角;作已知角的平分線;作線段的垂直平分線;過一點作已知直線的垂線;
(7)視圖與投影
畫基本幾何體(直棱柱、圓柱、圓錐、球)的三視圖(主視圖、左視圖、俯視圖);
基本幾何體的展開圖(除球外)、根據展開圖判斷和設別立體模型;
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看