新一輪中考復(fù)習(xí)備考周期正式開始,中考網(wǎng)為各位初三考生整理了各學(xué)科的復(fù)習(xí)攻略,主要包括中考必考點(diǎn)、中考常考知識(shí)點(diǎn)、各科復(fù)習(xí)方法、考試答題技巧等內(nèi)容,幫助各位考生梳理知識(shí)脈絡(luò),理清做題思路,希望各位考生可以在考試中取得優(yōu)異成績!下面是《2018中考數(shù)學(xué)知識(shí)點(diǎn):軸對稱》,僅供參考!
軸對稱
軸對稱的定義:
把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合 ,那么就說這兩個(gè)圖形關(guān)于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn)。軸對稱和軸對稱圖形的特性是相同的,對應(yīng)點(diǎn)到對稱軸的距離都是相等的。
軸對稱的性質(zhì):
(1)對應(yīng)點(diǎn)所連的線段被對稱軸垂直平分;
(2)對應(yīng)線段相等,對應(yīng)角相等;
(3)關(guān)于某直線對稱的兩個(gè)圖形是全等圖形。
軸對稱的判定:
如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱。
這樣就得到了以下性質(zhì):
1.如果兩個(gè)圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
2.類似地,軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
3.線段的垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等。
4.對稱軸是到線段兩端距離相等的點(diǎn)的集合。
軸對稱作用:
可以通過對稱軸的一邊從而畫出另一邊。
可以通過畫對稱軸得出的兩個(gè)圖形全等。
擴(kuò)展到軸對稱的應(yīng)用以及函數(shù)圖像的意義。
軸對稱的應(yīng)用:
關(guān)于平面直角坐標(biāo)系的X,Y對稱意義
如果在坐標(biāo)系中,點(diǎn)A與點(diǎn)B關(guān)于直線X對稱,那么點(diǎn)A的橫坐標(biāo)不變,縱坐標(biāo)為相反數(shù)。
相反的,如果有兩點(diǎn)關(guān)于直線Y對稱,那么點(diǎn)A的橫坐標(biāo)為相反數(shù),縱坐標(biāo)不變。
關(guān)于二次函數(shù)圖像的對稱軸公式(也叫做軸對稱公式 )
設(shè)二次函數(shù)的解析式是 y=ax2+bx+c
則二次函數(shù)的對稱軸為直線 x=-b/2a,頂點(diǎn)橫坐標(biāo)為 -b/2a,頂點(diǎn)縱坐標(biāo)為 (4ac-b2)/4a
在幾何證題、解題時(shí),如果是軸對稱圖形,則經(jīng)常要添設(shè)對稱軸以便充分利用軸對稱圖形的性質(zhì)。
譬如,等腰三角形經(jīng)常添設(shè)頂角平分線;
矩形和等腰梯形問題經(jīng)常添設(shè)對邊中點(diǎn)連線和兩底中點(diǎn)連線;
正方形,菱形問題經(jīng)常添設(shè)對角線等等。
另外,如果遇到的圖形不是軸對稱圖形,則常選擇某直線為對稱軸,補(bǔ)添為軸對稱圖形,
或?qū)⑤S一側(cè)的圖形通過翻折反射到另一側(cè),以實(shí)現(xiàn)條件的相對集中。
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看