因式分解
用待定系數法分解因式
余式定理及其應用
余式定理
f(x)除以(x-a)的余式是常數f(a)
因式:如果一個次數不低于一次的多項式因式,除這個多項式本身和非零常數外,再也沒有其他的因式,那么這個因式(即該多項式)就叫做質因式
因式分解:把一個多項式寫成幾個質因式乘積形式的變形過程叫做多項式的因式分解
1 提取公因式法
2 運用公式法
3 分組分解法
4 十字相乘法
5 配方法
6 求根公式法
公式(a的立方=a^3;a的平方=a^2)
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a平方+2ab+b平方
完全平方差公式: (a-b)平方=a平方-2ab+b平方
兩根式: ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]兩根式
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3.
新初三快掃碼關注
中考網微信公眾號
每日推送學習技巧,學科知識點
助你迎接2020年中考!
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看