來源:網絡資源 作者:中考網整理 2020-01-10 15:14:40
01
勾股定理
內容:直角三角形兩直角邊的平方和等于斜邊的平方;
表示方法:如果直角三角形的兩直角邊分別為a,b,斜邊為c,那么
勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數學家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進一步發現并證明了直角三角形的三邊關系為:兩直角邊的平方和等于斜邊的平方
02
勾股定理的證明
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗證勾股定理的思路是
①圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變
②根據同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理
常見方法如下:
方法一:
方法二:
四個直角三角形的面積與小正方形面積的和等于大正方形的面積.四個直角
方法三:
化簡得證。
03
勾股定理的適用范圍
勾股定理揭示了直角三角形三條邊之間所存在的數量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應用勾股定理時,必須明了所考察的對象是直角三角形
04
勾股定理的應用
②知道直角三角形一邊,可得另外兩邊之間的數量關系③可運用勾股定理解決一些實際問題
05
勾股定理的逆定理
如果三角形三邊長a,b,c滿足,那么這個三角形是直角三角形,其中c為斜邊.
06
勾股數
07
勾股定理的應用
勾股定理能夠幫助我們解決直角三角形中的邊長的計算或直角三角形中線段之間的關系的證明問題.在使用勾股定理時,必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運用勾股定理進行計算,應設法添加輔助線(通常作垂線),構造直角三角形,以便正確使用勾股定理進行求解。
08
勾股定理逆定理的應用
勾股定理的逆定理能幫助我們通過三角形三邊之間的數量關系判斷一個三角形是否是直角三角形,在具體推算過程中,應用兩短邊的平方和與最長邊的平方進行比較,切不可不加思考的用兩邊的平方和與第三邊的平方比較而得到錯誤的結論.
09
勾股定理及其逆定理的應用
勾股定理及其逆定理在解決一些實際問題或具體的幾何問題中,是密不可分的一個整體.通常既要通過逆定理判定一個三角形是直角三角形,又要用勾股定理求出邊的長度,二者相輔相成,完成對問題的解決.常見圖形:
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看