來(lái)源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2020-02-05 15:40:39
例1:已知如圖1-1:D、E為△ABC內(nèi)兩點(diǎn),求證:AB+AC>BD+DE+CE.
(法1)證明:將DE兩邊延長(zhǎng)分別交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;(1)
在△BDM中,MB+MD>BD;(2)
在△CEN中,CN+NE>CE;(3)
由(1)+(2)+(3)得:
AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE
∴AB+AC>BD+DE+EC
(法2)如圖1-2,延長(zhǎng)BD交AC于F,延長(zhǎng)CE交BF于G,在△ABF和△GFC和△GDE中有:
AB+AF>BD+DG+GF(三角形兩邊之和大于第三邊)(1)
GF+FC>GE+CE(同上)(2)
DG+GE>DE(同上)(3)
由(1)+(2)+(3)得:
AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE
∴AB+AC>BD+DE+EC。
在利用三角形的外角大于任何和它不相鄰的內(nèi)角時(shí)如直接證不出來(lái)時(shí),可連接兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角形的外角的位置上,小角處于這個(gè)三角形的內(nèi)角位置上,再利用外角定理:
例如:如圖2-1:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC>∠BAC。
分析:因?yàn)?ang;BDC與∠BAC不在同一個(gè)三角形中,沒(méi)有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置。
證法一:延長(zhǎng)BD交AC于點(diǎn)E,這時(shí)∠BDC是△EDC的外角,
∴∠BDC>∠DEC,同理∠DEC>∠BAC,
∴∠BDC>∠BAC
證法二:連接AD,并延長(zhǎng)交BC于F
∵∠BDF是△ABD的外角
∴∠BDF>∠BAD,同理,∠CDF>∠CAD
∴∠BDF+∠CDF>∠BAD+∠CAD
即:∠BDC>∠BAC。
注意:利用三角形外角定理證明不等關(guān)系時(shí),通常將大角放在某三角形的外角位置上,小角放在這個(gè)三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看