來源:網絡資源 作者:中考網整理 2020-02-13 15:48:30
與平移有關的,注意口訣“左加右減,上加下減”只用于函數,沿向量平移一定要使用平移公式完成;
19.中心對稱
關于中心對稱問題,只需使用中點坐標公式就可以,關于軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。
6種解題思想
1.函數與方程思想
函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。
2.數形結合思想
數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特征用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。
解題類型
①“由形化數”:就是借助所給的圖形,仔細觀察研究,提示出圖形中蘊含的數量關系,反映幾何圖形內在的屬性。
②“由數化形”:就是根據題設條件正確繪制相應的圖形,使圖形能充分反映出它們相應的數量關系,提示出數與式的本質特征。
③“數形轉換”:就是根據“數”與“形”既對立,又統一的特征,觀察圖形的形狀,分析數與式的結構,引起聯想,適時將它們相互轉換,化抽象為直觀并提示隱含的數量關系。
3.分類討論思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看