來源:網絡資源 作者:中考網整理 2020-03-18 17:29:15
(二)幾何型綜合題
先給定幾何圖形,根據已知條件進行計算,然后有動點(或動線段)運動,對應產生線段、面積等的變化。
求對應的(未知)函數的解析式(即在沒有求出之前不知道函數解析式的形式是什么)和求函數的定義域,最后根據所求的函數關系進行探索研究,一般有:
在什么條件下圖形是等腰三角形、直角三角形、四邊形是菱形、梯形等;
探索兩個三角形滿足什么條件相似等;
探究線段之間的位置關系等;
探索面積之間滿足一定關系求x的值等和直線(圓)與圓的相切時求自變量的值等。
求未知函數解析式的關鍵是列出包含自變量和因變量之間的等量關系(即列出含有x、y的方程),變形寫成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和復合法(列出含有x和y和第三個變量的方程,然后求出第三個變量和x之間的函數關系式,代入消去第三個變量,得到y=f(x)的形式),當然還有參數法,這個已超出初中數學教學要求。
找等量關系的途徑在初中主要有利用勾股定理、平行線截得比例線段、三角形相似、面積相等方法。求定義域主要是尋找圖形的特殊位置(極限位置)和根據解析式求解。
而最后的探索問題千變萬化,但少不了對圖形的分析和研究,用幾何和代數的方法求出x的值。
在解數學綜合題時我們要做到:數形結合記心頭,大題小作來轉化,潛在條件不能忘,化動為靜多畫圖,分類討論要嚴密,方程函數是工具,計算推理要嚴謹,創新品質得提高。
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看