來源:網絡來源 作者:中考網編輯 2020-08-18 15:50:38
中考網整理了關于2021年初中數學之三角函數誘導公式,希望對同學們有所幫助,僅供參考。
誘導公式一:終邊相同的角的同一三角函數的值相等
設α為任意銳角,弧度制下的角的表示:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
誘導公式二:π+α的三角函數值與α的三角函數值之間的關系
設α為任意角,弧度制下的角的表示:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
誘導公式三:任意角α與-α的三角函數值之間的關系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
誘導公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
誘導公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
誘導公式六:π/2±α及3π/2±α與α的三角函數值之間的關系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
相關推薦:
2021年初中數學三角函數公式匯總
關注中考網微信公眾號
每日推送中考知識點,應試技巧
助你迎接2020年中考!
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看