來源:網絡來源 作者:中考網編輯 2020-12-30 11:58:25
中考網整理了關于2021初中七年級數學知識點:三角函數公式關系,希望對同學們有所幫助,僅供參考。
倒數關系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數關系
對角線上兩個函數互為倒數;
商數關系
六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。(主要是兩條虛線兩端的三角函數值的乘積,下面4個也存在這種關系。)。由此,可得商數關系式。
平方關系
在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α
半角的正弦、余弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
萬能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函數的和差化積公式
sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)
sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
三角函數的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]
相關推薦:
2021年全國各省市中考報名時間匯總
2021年全國各地中考體育考試方案匯總
2021年全國各省市中考時間匯總
關注中考網微信公眾號
每日推送中考知識點,應試技巧
助你迎接2021年中考!
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看