來源:網絡資源 2022-04-23 17:05:12
三角函數特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
2黃金三角
α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5
cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)
α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5)
cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5
α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5
cscα=√5-1 secα=√(50+10√5)/5 cotα=√(5-2√5)
α=72°(2π/5) sinα=√(10+2√5)/4 cosα=(√5-1)/4 tαnα=√(5+2√5)
cscα=√(50-10√5)/5 secα=√5+1 cotα=√(25-10√5)/5
通過比較可發現與黃金三角形相關的三角函數值有很強的對稱性
這些數值的證明可以借助黃金三角形中的比例
3兩角和與差
sin(a+b)=sin a cos b +cos a sin b
cos(a+b)=cos a cos b -sin a sin b
sin(a-b)=sin a cos b -cos a sin b
cos(a-b)=cos a cos b +sin a sin b
tan(a+b)=(tan a +tan b )/(1-tan a tan b )
tan(a-b)=(tan a -tan b )/(1+tan a tan b )
相關推薦:
關注中考網微信公眾號
每日推送中考知識點,應試技巧
助你迎接2022年中考!
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看