來源:網絡資源 2022-11-21 16:15:29
考點一、線段垂直平分線,角的平分線,垂線
1、線段垂直平分線的性質定理及逆定理
垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。
線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
2、角的平分線及其性質
一條射線把一個角分成兩個相等的角,這條射線叫做這個角的平分線。角的平分線有下面的性質定理:
(1)角平分線上的點到這個角的兩邊的距離相等。
(2)到一個角的兩邊距離相等的點在這個角的平分線上。
3、垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。2、三角形中的主要線段
(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。
(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。
(3)從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
4、三角形的穩定性
三角形的形狀是固定的,三角形的這個性質叫做三角形的穩定性。三角形的這個性質在生產生活中應用很廣,需要穩定的東西一般都制成三角形的形狀。6、三角形的三邊關系定理及推論
(1)三角形三邊關系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。
(2)三角形三邊關系定理及推論的作用:
①判斷三條已知線段能否組成三角形②當已知兩邊時,可確定第三邊的范圍。③證明線段不等關系。7、三角形的角關系
三角形的內角和定理:三角形三個內角和等于180°。推論:
①直角三角形的兩個銳角互余。
②三角形的一個外角等于和它不相鄰的來兩個內角的和。③三角形的一個外角大于任何一個和它不相鄰的內角。
注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。等角的補角相等,等角的余角相等。
考點二、全等三角形
1、全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。
能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。夾邊就是三角形中相鄰兩角的公共邊,夾角就是三角形中有公共端點的兩邊所成的角。
2、三角形全等的判定三角形全等的判定定理:
直角三角形全等的判定:
對于特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)
考點三、等腰三角形
1、等腰三角形的性質
(1)等腰三角形的性質定理及推論:
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,并且每個角都等于60°。(2)等腰三角形的其他性質:
①等腰直角三角形的兩個底角相等且等于45°
②等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
2、等腰三角形的判定
等腰三角形的判定定理及推論:
定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。
3、直角三角形
(1)定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
(2)依據:
①邊的關系:初中數學復習提綱
②角的關系:A+B=90°
③邊角關系:三角函數的定義。
注意:盡量避免使用中間數據和除法。
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看