您現在的位置:中考 > 知識點庫 > 初中數學知識點 > 軸對稱
軸對稱變換 知識點1軸對稱變換 由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換. 成軸對稱的兩個圖形中的任何一個可以看作由另一個圖形經過軸對稱變換后得到.一個軸對稱圖形可以看作以它的一部分為基礎,經軸對稱
2022-04-14
(1)軸對稱:如果把一個圖形沿著一條直線對折后,與另一個圖形重合,那么這兩個圖形成軸對稱,兩個圖形中相互重合的點叫做對稱點,這條直線叫做對稱軸。 (2)軸對稱圖形:如果把一個圖形沿某條直線對折,對折后圖形的
2022-04-14
常見圖形的對稱軸 ①線段有兩條對稱軸,是這條線段的垂直平分線和線段所在的直線。 ②角有一條對稱軸,是角平分線所在的直線。 ③等腰三角形有一條對稱軸,是頂角平分線所在的直線。 ④等邊三角形有三條對稱軸,分
2022-04-14
線段垂直平分線: (1)定義:垂直平分一條線段的直線是這條線的垂直平分線。 (2)性質:①線段垂直平分線上的點到這條線段兩個端點的距離相等; ②到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。 注意:
2022-03-04
用坐標表示軸對稱小結: 在平面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為相反數.關于y軸對稱的點橫坐標互為相反數,縱坐標相等. 2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相
2022-03-04
軸對稱圖形 1. 把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。 2. 把一個圖形沿著某一條直
2022-03-04
對稱軸的條數: 角有一條對稱軸,即該角的角平分線;等腰三角形有一條對稱軸,是底邊的垂直平分線;等邊三角形有三條對稱軸,分別是三邊上的垂直平分線;菱形有兩條對稱軸,分別是兩條對角線所在的直線,矩形有兩條對
2022-03-04
用坐標表示軸對稱 平行于坐標軸的直線對稱 點P(x,y)關于直線x=m對稱的點的坐標是(2m-x,y); 點P(x,y)關于直線y=n對稱的點的坐標是(x,2n-y)。
2022-03-04
軸對稱與軸對稱圖形 1.軸對稱:把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。 2.軸對稱圖形:如果一個
2022-03-04
一、軸對稱與軸對稱圖形: 1.軸對稱:把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。 2.軸對稱圖形:如
2022-03-04
中心對稱的性質: (1)關于中心對稱的兩個圖形是全等形; (2)在成中心對稱的兩個圖形中,連接對稱點的線段都經過對稱中心,并且被對稱中心平分; (3)成中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
2022-03-04
軸對稱圖形: 線段、角、等腰三角形、等邊三角形、菱形、矩形、正方形、等腰梯形、圓
2022-03-04
軸對稱性質注意事項: (1)關于某直線對稱的兩圖形全等,但兩全等圖形不一定軸對稱; (2)對稱軸是對應點連線的垂直平分線; (3)對應點連線互相平行; (4)成軸對稱的兩個圖形,如果它們的對應線段或對應線段的延長線相交
2022-03-04
已知:如下圖,A、B兩點是直線l同旁的兩個定點 問題:在直線l上求一點P,使得PA+PB的值最小. 分析:作點A關于直線l的對稱點A ,連結A B,交直線于點P,此時PA+PB=A B最小.證明過程很簡單,在直線上再任取一點P ,P
2022-03-04
用坐標表示軸對稱 坐標軸對稱 點P(x,y)關于x軸對稱的點的坐標是(x,-y) 點P(x,y)關于y軸對稱的點的坐標是(-x,y) 原點對稱 點P(x,y)關于原點對稱的點的坐標是(-x,-y) 坐標軸夾角平分線對稱 點P(x,y)關于第一、
2022-03-04
京ICP備09042963號-13 京公網安備 11010802027853號
中考網版權所有Copyright©2005-2019 sehure-sokuhou.com. All Rights Reserved.